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Abstract. Field theories with a S2-valued unit vector field living on S3×R space-time are investigated. The
corresponding eikonal equation, which is known to provide an integrable sector for various sigma models
in different spaces, is solved giving static as well as time-dependent multiply knotted configurations on S3

with arbitrary values of the Hopf index. Using these results, we then find a set of hopfions with topological
charge QH =m

2, m ∈ Z, in the integrable subsector of the pure CP 1 model. In addition, we show that the
CP 1 model with a potential term provides time-dependent solitons. In the case of the so-called “new baby
Skyrme” potential we find, e.g., exact stationary hopfions, i.e., topological Q-balls.
Our results further enable us to construct exact static and stationary Hopf solitons in the Faddeev–Niemi
model with or without the new baby Skyrme potential. Generalizations for a large class of models are also
discussed.

1 Introduction

Dynamical models allowing for stable knot-like structures
seem to play an increasingly important role in modern
physics. For instance, knotted solitons find some applica-
tions in condensed matter physics [1, 2] as topological de-
fects in multi-component Bose condensates. On the other
hand, in high energy physics the rising interest originates
in the idea that glueballs, i.e., effective particle-like exci-
tations in the low-energy limit of quantum gluodynamics,
may be understood as closed, in general knotted, tubes of
the squeezed color field (possibly due to the dual Meiss-
ner effect [3]). In fact, such a framework is in accordance
with the standard picture of mesons where a quark and
an antiquark are connected by a thin flux-tube of the
gauge field. When the quark sources are absent, the ends
of the tube must join to form a (in general knotted) loop.
There has been made much effort to derive such a qual-
itative picture from the original quantum theory and to
find the correct low-energy effective action with knotted
solitons as stable excitations. One well-known proposal is
the Faddeev–Niemi model [4], which is, in fact, just the
S2 restriction of the Skyrme model, as can be explicitly
demonstrated [5]

LFN =
1

2
µ2L2−

1

4e2
L4 , (1)
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where

L2 ≡ (∂µn)
2 = 4

∂µu∂µū

(1+uū)2
, (2)

L4 ≡ [n · (∂µn×∂νn)]
2

= 8
(∂µu∂µū)

2− (∂µu∂µu)(∂ν ū∂ν ū)

(1+uū)4
, (3)

where µ is a constant with the dimension of a mass, and
e is a dimensionless constant. Further, n is a real three
component unit vector field living in (3+1) Minkowski
space-time, and u is a complex scalar field related to the
unit vector field by the standard stereographic projec-
tion

n=
1

1+ |u|2
(u+ ū,−i(u− ū), |u|2−1). (4)

There are some arguments that this field, connected with
the primary gauge field via the Cho–Faddeev–Niemi de-
compositions, might describe the infrared relevant degrees
of freedom of quantum gluodynamics [6–10]. On the other
hand, the stability of the spectrum and even of the field
decomposition under quantum fluctuations is a matter of
active research and discussion [11, 12].
It has been proved that the Faddeev–Niemi model in-

deed supports knotted solitons [13] with a non-zero value
of the Hopf index QH ∈ π3(S2). However, only numerical
solutions have been reported [14, 15] and many important
questions concerning, e.g., the geometry of the stable (or
meta-stable) configurations in a fixed topological sector are
still unsolved. In order to understand the behavior of hop-
fions in an analytical way and to test some ideas borrowed
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from other soliton systems, two dynamical models have
been proposed. They are known as the Nicole model [16],
described by

LNi =
1

2
L
3
2
2 , (5)

and the Aratyn–Ferreira–Zimerman model [17], with La-
grangian

LAFZ =
1

4
L
3
4
4 . (6)

A common feature of these two non-linear models is their
invariance under scale reparametrizations. This provides
a new way (originally proposed by Deser et al. [18]) to cir-
cumvent Derrick’s theorem. In addition, they possess exact
soliton solutions.
However, there is a different strategy to construct ex-

act hopfions. Namely, it is possible to change the base
space in such a manner that the topological content of
the theory remains unchanged. The most obvious proposi-
tion is to investigate fields on a three-dimensional sphere
S3R0 , where R0 is its radius, instead of the standard three-
dimensional Euclidean space R3 [19, 20]. In this case, the
introduction of the new parameter R0 sets the scale in the
model and therefore gives an alternative way to circum-
vent Derrick’s theorem about the non-existence of static
solitons. Hopf solitons on S3 have been recently considered
by Ward and Ferreira et al. in the context of Faddeev–
Niemi- [19] and AFZ-like models [20], respectively. In the
present paper, we would like to further develop these in-
vestigations. Concretely, in Sect. 2 we construct a family of
solutions for the static as well as for the time-dependent
eikonal equation for arbitrary values of the Hopf index.
The eikonal equation defines integrable subsectors for the
models discussed in the subsequent sections, and its solu-
tions, therefore, will help us in finding explicit soliton solu-
tions. In Sect. 3 we study the CP (1) model and find a class
of static solutions and, when a potential is added, a simi-
lar class of time-dependent solutions. The same results
can be found for a family of generalized CP (1) models. In
Sect. 4 we study another family of models, among which
the Faddeev–Niemi model can be found. We establish the
existence of a Hopf soliton with topological charge one for
all of them. Further, for the Faddeev–Niemi model with
and without a potential term, the existence of a time-
dependent, stationary solution is demonstrated. In add-
ition, we construct some generalizations of these models,
which have solitons with higher Hopf index. Section 5 con-
tains our conclusions.
To finish the introduction, let us remind the reader of

some details of the geometry of the three-sphere. A three-
sphere S3 with radius R0 embedded in four-dimensional
Euclidean space R4 is described by the equation

X21 +X
2
2 +X

2
3 +X

2
4 =R

2
0 , (7)

where the Xi are the usual orthonormal coordinates in R
4.

Further, the metric on the surface defined by (7) is induced
by the standard Euclidean metric onR4. Introducing coor-
dinates on S3 as in [20],

X1 = R0
√
z cosφ2 , X3 = R0

√
1− z cosφ1 ,

X2 = R0
√
z sinφ2 , X4 =R0

√
1− z sinφ1 , (8)

where z ∈ [0, 1] and the angles φ1, φ2 ∈ [0, 2π], the metric
and volume form on space-time R×S3 are

ds2 = dt2−R20

(
dz2

4z(1− z)
+ (1− z)dφ21+ zdφ

2
2

)
, (9)

dV =
1

2
dtdzdφ1dφ2 . (10)

2 Eikonal knots on S3

The construction of soliton solutions with non-zero Hopf
index is sometimes facilitated by restricting the original
theory to an integrable submodel [21], where integrabil-
ity is understood as the existence of an infinite number of
local conserved currents. In typical situations (Nicole or
Faddeev–Niemi model), such an integrable subsystem can
be defined by imposing the complex eikonal equation [22]1

(∂µu)
2 = 0 . (11)

Solutions of the complex eikonal equation on R3 describe
(linked) torus knots with an arbitrary value of the Hopf
charge [25, 26] and in some particular cases may help to
derive hopfions in dynamical systems [27]. On the other
hand, the fact that the eikonal equation is an integrabil-
ity condition for sigma models does not depend on the base
space. Thus, as our aim is to study knotted configurations
on S3, it is important to solve the eikonal on the three-
sphere as well. In fact, all solitons which we study will obey
the eikonal equation as well.
Let us assume the following static Ansatz [17, 20]:

u0 = f(z)e
i(m1φ1+m2φ2) , (12)

wherem1,m2 are integer numbers. Then we find

∇u=
1

R0

[
2
√
z(1− z)f ′êz+

im1f√
1− z

êφ1 +
im2f√
z
êφ2

]

× ei(m1φ1+m2φ2) , (13)

and (11) can be rewritten as follows:

4z(1− z)f
′2−

f2

z(1− z)

(
zm21+(1− z)m

2
2

)
= 0 , (14)

or

f
′2

f2
=
zm21+(1− z)m

2
2

4z2(1− z)2
. (15)

1 For some Lagrangian-dependent “generalizations” of the
eikonal equation and their application to integrability, see [23].
Moreover, a weaker integrability condition has been investi-
gated in [24].
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One can solve this equation and obtain the following solu-
tions:

f± = C

[(
m1+

√
(m21−m

2
2)z+m

2
2

m1−
√
(m21−m

2
2)z+m

2
2

)m1

×

(
−m2+

√
(m21−m

2
2)z+m

2
2

m2+
√
(m21−m

2
2)z+m

2
2

)m2]± 12
.

(16)

Here C is a complex constant. Our solutions simplify a lot
if we assume the special casem1 =m2 =m. Then

f± = C

(
1

z
−1

)±m2
. (17)

The point is that such profile functions, if inserted into the
Ansatz, give configurations with a non-trivial value of the
pertinent topological charge. Namely [20],

QH =±m1m2 . (18)

Moreover, taking into account the symmetries of the com-
plex eikonal equation we can find more general solutions

u= F (u0) , (19)

where F is any (anti-) holomorphic function of the basic so-
lution u0. Thus, we can conclude that the complex eikonal
equation on S3 describes linked torus knots, as its counter-
part on R3.
The eikonal equation on S3 also enables us to ob-

tain time-dependent knotted configurations, unlike the
standard R3 case where no time-dependent solutions are
known. The non-static eikonal equation has the form

(∂tu)
2− (∇u)2 = 0 . (20)

Let us assume that the time-dependence can be factorized.
Due to (20) such a factorization must have the form of an
exponential,

u0 = f(z)e
±λtei(m1φ1+m2φ2) , (21)

where λ is a complex parameter and f(z) is a new profile
function yet to be determined. It is straightforward to no-
tice that there are two generic situations.
First of all, for λ∈Rwe can find exploding or collapsing

solutions, depending on the sign of the parameter. Now,
formula 20 takes the form

4z(1− z)f
′2−f2

[
zm21+(1− z)m

2
2

z(1− z)
+R20λ

2

]
= 0 (22)

or

f
′2

f2
=
1

4

[
zm21+(1− z)m

2
2

z2(1− z)2
+
R20λ

2

z(1− z)

]
. (23)

This equation can be integrated giving exact but rather
complicated solutions for the shape function

f±(z) = C

× exp

[
∓
1

2a
arctan

(
1+a2

(
m21−m

2
2

)
−2z

2
√
z(1− z)+a2(m22(1− z)+m

2
1z)

)]

×

[
1

a3m32z

(
− z+a2

(
m22(−2+ z)−m

2
1z
)

+2am2

√
z(1− z)+a2

(
m22(1− z)+m

2
1z
))]±m22

×

[
1

a3m31(−1+ z)

(
1− z+a2

(
m22(1− z)−m

2
1(1+ z)

)

−2am1

√
z(1− z)+a2

(
m22(1− z)+m

2
1z
))]∓m12

,

(24)

where C is a complex constant and

a2 =
1

R20λ
2
. (25)

It is easy to see that these new profile functions are
asymptotically (for z → 0 and z → 1) identical to their
static counterparts. The additional term in the eikonal
equation only modifies the behavior in the intermedi-
ate region. Therefore, the topological features of the
time-dependent solutions are analogous to the static
case.
Our solutions take a simpler form ifm1 =m2 =m,

f±(z) = C exp

[
∓
1

2a
arctan

(
1−2z

2
√
m2a2+ z− z2

)]

×

(
1− z

z
·
z+2ma

(
ma+

√
m2a2+ z− z2

)
1− z+2ma

(
ma+

√
m2a2+ z− z2

)
)∓m2

.

(26)

Another type of time-dependent solutions is a family of
time-periodic configurations. Now λ = iω, where ω ∈ R.
Thus,

u0 = f(z)e
±iωtei(m1φ1+m2φ2), (27)

where the unknown shape function satisfies the following
equation:

f
′2

f2
=
1

4

[
zm21+(1− z)m

2
2

z2(1− z)2
−
R20ω

2

z(1− z)

]
. (28)
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In this case the solution is

f±(z) = C

(
−1+a2(m21−m

2
2)+2z

+2
√
a2
(
m22(1− z)+m

2
1z
)
− z(1− z)

)∓ 1
2a

×

[
1

a3m31(−1+ z)

×

(
−1+ z+a2

(
m22(1− z)+m

2
1(1+ z)

)

+2
√
a2(m22(1− z)+m

2
1z)− z(1− z)

)]±m12

×

[
1

a3m32z

(
z+a2(m22(−2+ z)−m

2
1z)

−2
√
a2
(
m22(1− z)+m

2
1z
)
− z(1− z)

)]∓m22
,

(29)

or in the simpler case, whenm1 =m2 =m,

f±(z) = C
(
−1+2z+2

√
m2a2− z(1− z)

)± 1
2a

×

(
−1+ z

z
·
z−2ma(ma+

√
m2a2− z(1− z))

−1+ z+2ma(ma+
√
ma2− z(1− z))

)±m2
.

(30)

Such shape functions give non-trivial topological configu-
rations if f is a smooth, real function which tends to 0 for
z→ 0 and to∞when z→ 1 (or inversely). Therefore we get
a restriction for the frequencies of the stationary solutions
with a fixed topological charge:

ω2 ≤
2
(
m21+m

2
2

)
R20

. (31)

In other words, there is an upper bound for the frequencies
of a stationary solution. Only configurations with lower fre-
quencies can be constructed. Equation (31) leads to two
important observations. Firstly, the range of possible fre-
quencies grows with the topological charge. Knots with
higher topological charge can have higher frequencies. Sec-
ondly, the range becomes narrower if the radius of the base
space grows. Thus, for the Euclidean space, i.e., when R→
∞, no time-periodic eikonal knots can be found. At the end
of this section let us notice that the complex eikonal equa-
tion admits also topologically trivial solutions. An interest-
ing example can be found if we assume that the complex
field is a function only of time and z variable. Then using
the method of characteristics we derive the following gen-
eral solution:

u= u

(
t±
1

2
arcsin(1−2z)

)
. (32)

One can immediately see that such a solution describes
a very non-linear travelling wave.

3 CP 1 model on S3

So far, the considered knots have been only solutions of
the complex eikonal equation, without any underlying La-
grange structure. In the next sections we show that at least
some of the eikonal knots appear as solutions of a large
family of non-linear sigma models on S3. Let us mention
at this point that for the purely quartic model with La-
grangian L4 – which is integrable without any additional
constraint – both static and time-dependent, stationary
hopfions on S3 have been found and studied in [20].

3.1 Static solutions

Let us start with the simplest example, i.e., the CP 1

model,

LCP1 ≡
1

4
L2 =

∂µu∂
µū

(1+ |u|2)2
. (33)

The equation of motion reads

∂2µu−
2ū

1+ |u|2
(∂µu)

2 = 0 . (34)

This equation is certainly satisfied for a submodel, where
the complex field u obeys the two equations

∂2µu= 0 and (∂µu)
2 = 0 , (35)

i.e., the wave equation and the eikonal equation.2 Due to
the fact that the eikonal equation is imposed, this sub-
model belongs to the integrable systems.
In order to find static knotted configurations we assume

the same Ansatz as in (12). Then

∇2u=
1

R20

[
4∂z (z(1− z)f

′)−f

(
m21
1− z

+
m22
z

)]

× ei(m1φ1+m2φ2) , (36)

and the first equation in (35) can be rewritten as

4∂z (z(1− z)f
′) = f

(
m21
1− z

+
m22
z

)
. (37)

Of course, as the subsystem consists of the static eikonal
equation, as well, the profile function f has to satisfy (15).
Therefore, the left hand side of (37) can be expressed by
(15). Then we obtain

4∂z (z(1− z)f
′) = 4z(1− z)f ′

f ′

f
. (38)

A first integration leads to

ln

(
1

b

z(1− z)f ′

f

)
= 0 , (39)

2 This pair of equations has been studied first, in the context
of the CP 1 model in 2+1 dimensional space-time, in [28].
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which possesses the following solutions:

f =B

(
1

z
−1

)b
. (40)

Here B and b are arbitrary, in general complex constants.
However, as this solution should satisfy also the eikonal
equation, we find that b=±m/2. Therefore, the field con-
figurations

u± =B

(
1

z
−1

)±m2
eim(φ1+φ2) (41)

are solutions of the submodel (35) and, as a consequence,
they are static solutions of CP 1 model. Moreover, they
carry a non-zero value of the Hopf index

QH =±m
2 . (42)

More complicated solutions can be constructed if we take
advantage of the symmetries of the submodel. In fact, it is
easily checked that any ũ of the form

ũ= F (u) (43)

is a solution, where F is any (anti-) holomorphic function,
and u (ū) is a solution of the submodel (e.g., of the form
(41) derived above). Thus, we can obtain quite complicated
linked configurations with arbitrary Hopf charge. Let us
now calculate the energies of the obtained solutions. They
are given by

E =

∫
S3

∇u∇ū

(1+ |u|2)2
1

2
dzdφ1dφ2 . (44)

Thus, inserting (41) we get

E = 4π2m2R0

∫ 1
0

1

z(1− z)

f2

(1+f2)2
dz , (45)

and finally

E = 4π2R0|m| . (46)

Re-introducing the Hopf index we therefore find

E = 4π2R0|QH|
1
2 , (47)

i.e., the energies grow like the square root of the Hopf in-
dex. One can also observe that there is some degeneracy in
the energy spectrum, because the energy remains the same
for all values of the parameter B. As we will discuss in the
last section, these solutions are not stable but rather saddle
point solutions.

3.2 Time-dependent solutions

Exact, time-depended hopfions can be found if we consider
the CP 1 model with a potential explicitly breaking the
global O(3) symmetry:

L=
1

4
L2−VI ≡

∂µu∂
µū

(1+ |u|2)2
−
β2

4

|u|2

(1+ |u|2)2
. (48)

Here β2 is a positive constant. Such a potential has a very
simple form if we express it in terms of the original unit
vector field ,

VI(n) =
β2

16

[
1− (n3)2

]
. (49)

It is worth mentioning that this potential has been previ-
ously considered in the context of the Skyrme model on
the plane. More precisely, it is the potential part of the so-
called “new baby Skyrme model” [29], which stabilizes the
topological solitons in that model. In addition, possible ap-
plications of sigma-model type theories to the low-energy
sector of YM theory require the explicit breaking of the
globalO(3) symmetry, which may be achieved, e.g., by the
introduction of a symmetry-breaking potential like the one
chosen above [31, 32] (see also our remark in the summary
section).
The equation of motion for our model is

1

(1+ |u|2)2
∂µ∂

µu−
2ū

(1+ |u|2)3
(∂u)2

+
β2

4

u

(1+ |u|2)2
−
β2u|u|2

2(1+ |u|2)3
= 0 . (50)

Similarly as in the pure CP 1 model it is possible to de-
fine a submodel consisting of two relative simple equations:
a dynamical one,

∂µ∂
µu+

β2

4
u= 0 , (51)

and a constraint being a modification of the eikonal equa-
tion

2ū(∂µu)
2+
β2

2
u|u|2 = 0 . (52)

Obviously, every solution of the subsystem obeys the equa-
tion of motion for the full model. Notice that such a sub-
model is a “massive” modification of the pure CP 1 sub-
model with a “imaginary mass”. In particular, formula
(52) can be rewritten in the form of the massive eikonal
equation [30]

(∂µu)
2−M2u2 = 0 , (53)

where the “mass” parameter isM2 =−β2/4.
Once again solutions of the submodel (51) and (52) are

assumed to have the form

u= f(z)e±iωtei(m1φ1+m2φ2) . (54)

Then, we derive the following equations for the unknown
shape function:

4∂z (z(1− z)f
′)−f

[
m1

1− z
+
m2

z
−R20ω

2+
β2R20
4

]
= 0 ,

(55)

4z(1− z)f
′2−f2

[
m1

1− z
+
m2

z
−R20ω

2+
β2R20
4

]
= 0 .

(56)
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These expressions can be simplified if we impose an ad-
ditional condition for the frequency of the stationary
solutions

ω2 =
β2

4
. (57)

Then we get a set of equations which are identical to the
static equations in the pure CP 1 model. Therefore the
shape function is given by

f(z) = C

(
1

z
−1

)±m2
, (58)

wherem=m1 =m2 and C is a complex constant. To sum-
marize, we have found a family of topologically non-trivial,
stationary hopfions

u= C

(
1

z
−1

)±m2
e±i

β
2 teim(φ1+φ2) . (59)

Such stationary configurations which, although they rotate
in an internal space, possess a time-independent energy
density, are known as Q-balls. They provide, e.g., a well-
known example of non-topological solitons. In the non-
topological case these objects normally carry a conserved
charge where the conserved current is a Noether current
originating from an unbroken continuous global symmetry.
In our case it is the remaining unbroken O(2) subgroup of
O(3). Our solutions, however, have a conserved topological
charge in addition to the non-topological Noether charge

Q= i

∫
ū∂tu−u∂tū

(1+ |u|2)2
dV . (60)

The energy of the stationary solutions reads

E =

∫
dV

(
∇u∇ū

(1+ |u|2)2
+
∂tu∂tū

(1+ |u|2)2
+
β2

4

|u|2

(1+ |u|2)2

)
.

(61)

Thus

E = 4π2R0|QH|
1
2 +
1

2
|βQ| , (62)

where (46) has been taken into account. As one might have
expected, the Q-hopfions modify the standard CP 1 mod-
eline in such a way that the degeneracy in the energy is
lifted.
It should be noticed that analogous stationary solutions

of the CP 1 model with the new baby Skyrme potential liv-
ing in (2+1) dimensional Minkowski space-time and car-
rying the pertinent topological charge (winding number)
have been previously found by Leese [33]. They are known
as Q-lumps.
Let us mention an interesting difference between Q-

lumps and Q-hopfions. Q-hopfions have finite Noether
charge and finite energy for all values of the topological
Hopf charge, including Hopf charge one. On the other
hand, it has been shown that in (2+1) dimensions the en-
ergy of a Q-lump configuration is finite if and only if the
topological charge is at least two [33].

Another type of time-dependent configurations can
be obtained in the CP 1 model with a different kind of
potential:

L=
1

4
L2−VII ≡

∂µu∂
µū

(1+ |u|2)2
−
β2

16

(
1−|u|2

1+ |u|2

)2
. (63)

This potential also takes an elegant form if expressed by
the unit vector field, namely

VII(n) =
β2

16
(n3)2 . (64)

In this case we obtain another massive modification of the
free CP 1 submodel with a real massM2 = β2/4.
One can check that now the time-dependent solutions

are given by

u= C

(
1

z
−1

)±m2
e±
β
2 teim(φ1+φ2) , (65)

describing collapsing or exploding unknots.
In spite of the fact that our time-dependent hopfions

are not sensitive to the radius of the sphereR0, their energy
is. Thus, such solutions do not lead to finite energy config-
urations in the limit R0→∞, that is, in three-dimensional
Euclidean space.
Finally, let us notice that, contrary to the pure CP 1

model, a superposition of dynamical solutions derived for
the submodels (51) and (52) is no longer a solution. This is
due to the non-linearity of the constraint (52). However, we
can obtain time-dependent multi-knotted solutions if we
assume that such a configuration moves collectively. That
is to say, the general solution is

u= F (us)e
±iωt , (66)

where us is an arbitrary static solution of the pure CP
1

model and F is any (anti-) holomorphic function.

3.3 Generalized CP 1 models

The obtained results may be easily generalized to more
complicated models. Namely, let us consider the following
family of Lagrangians:

L= σ(|u|2)
∂µu∂

µū

(1+ |u|2)2
, (67)

where σ(|u|2) is any function of the modulus squared. This
family represents CP 1 models with a “dielectric” function
σ. The equation of motion reads

σ̃∂µ∂
µu+ σ̃′ū∂µu∂

µu= 0 , (68)

where σ̃ ≡ σ/(1+ |u|2)2, and the prime denotes the deriva-
tive with respect to the argument |u|2. Thus, we get that
solutions of the submodel (35) also obey (68) and, as a con-
sequence, all generalized models possess the same static
solutions given by (41).
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Similarly, time-dependent solutions can be derived if we
consider the generalized CP 1 models with a potential:

L= σ(|u|2)

(
∂µu∂

µū

(1+ |u|2)2
−
β2

4

|u|2

(1+ |u|2)2

)
. (69)

The field equation is

σ̃′ū

(
(∂µu)

2−
β2

4

)
+ σ̃

(
∂2µu−

β2

4
u

)
= 0 . (70)

Therefore, solutions of the dynamical subsystem of the
CP 1 model (51) and (52) satisfy (70) as well. That is to say,
we have shown that the system (69) possesses stationary
hopfions,

u= C

(
1

z
−1

)±m2
e±im(φ1+φ2)e±iωt , (71)

where the frequency obeys the relation ω2 = β2/4, as be-
fore. As an interesting example, let us mention a model
with the so-called “old baby Skyrme” potential,

L=
(∂n)2

1+n3
−
β2

16
(1−n3) . (72)

Analogously, one can construct Lagrangians which possess
exact collapsing/exploding time solutions (65),

L= σ(|u|2)

(
∂µu∂

µū

(1+ |u|2)2
−
β2

4

(
1−|u|2

1+ |u|2

)2)
. (73)

It is straightforward to obtain time-dependent multiknot-
ted configurations.

4 Other models

4.1 Hopfion with QH = 1

The aim of this section is to investigate a rather general
family of non-linear sigma models on S3. The unique re-
striction which we assume is that the Lagrange density is
any reasonable function of the quantity

l =
1

4
L2 =

∂µu∂
µū

(1+ |u|2)2
. (74)

Thus, we will analyze the following models:

L= L

(
∂µu∂

µū

(1+ |u|2)2

)
. (75)

One well-known member of that family is the Nicole model
LNi = 4l3/2. Of course, the pureCP 1 model belongs to this
family as well. However, as this case is rather special, we
have discussed it separately in the previous section.
The equation of motion reads

∂µ

(
L′

(1+ |u|2)2
∂µu

)
+

2u

(1+ |u|2)3
L′(∂µu∂

µū) = 0 , (76)

or

L′∂µ∂
µu+L′′ (∂µl ∂

µu)−
2ū

1+ |u|2
L′(∂µu)

2 = 0 , (77)

where the prime denotes the differentiation with respect
to l. Analogously as for the pure CP 1 model it is possible
to define an integrable submodel:

∂2µu= 0 (∂µu)
2 = 0 and ∂µl ∂

µu= 0 . (78)

As we see, such a subsystem is a restriction of the sub-
model for the pure CP 1 model (35), where the scalar field
must obey an additional equation. Therefore, a static soli-
ton solution in this submodel can be derived if we impose
the additional condition ∂µl ∂

µu= 0 on the solutions of the
pure CP 1 model obtained above.
We calculate

l =
1

(1+f2)2
1

R20

(
4z(1− z)f

′2+
f2
(
m21z+(1− z)m

2
2

)
z(1− z)

)

(79)

or, if we putm1 =m2 =m,

l =
2f2m2

z(1− z)R20

1

(1+f2)2
=

2m2

z(1− z)R20

(
1
z
−1
)m

[
1+
(
1
z
−1
)m]2 .
(80)

We immediately notice that for m= 1 we get l = 2/R20 =
const. and the additional condition is trivially obeyed.
That means that we have constructed a solution of the
submodel (78), i.e. a topological solution of the family of
models (75) with unit Hopf index QH = 1:

u=

(
1

z
−1

)1
2

ei(φ1+φ2) =
X3+iX4
X1− iX2

(81)

which is essentially (i.e., up to the reflection X2→−X2)
the standard Hopf fibration of S3. Moreover, we can calcu-
late the energy of the soliton,

E = 2π2R30L

(
2

R20

)
. (82)

Observe that the class of systems allowing for the hopfion
(81) is even larger than assumed in (75). In fact, all models
depending additionally on a second invariant j, with

j =
1

8
L4 =

(∂µu∂
µū)2− (∂µu∂µu)(∂µū∂µū)

(1+ |u|2)4
, (83)

also possess this hopfion with unit charge. This is due to
the trivial fact that the variable j can be reduced to the
variable l if the eikonal equation is satisfied. As this equa-
tion already belongs to the submodel (78) one can conclude
that (78) is an integrable submodel for all models of the
form

L= L(l, j) , (84)
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with the non-trivial topological soliton (81). As a conse-
quence, as

LFN = 2

(
µ2 l−

1

e2
j

)
, (85)

we are able to reproduce, within the generalized integrabil-
ity, the exact solution for the Faddeev–Niemi model on S3

originally found by Ward [19].

4.2 Stationary hopfions in the Faddeev–Niemi model

The topic addressed in this subsection is the existence of
a time-dependent, stationary soliton in the Faddeev–Niemi
model with a potential term chosen as in (49). Therefore,
we consider the Lagrangian L= 12LFN−VI, or, explicitly

L= µ2
∂µu∂

µū

(1+ |u|2)2
−
1

e2
(∂µu∂

µū)2− (∂µu∂µu)(∂µū∂µū)

(1+ |u|2)4

−
β2

4

|u|2

(1+ |u|2)2
, (86)

with the field equation

µ2(1+uū)3∂2µu−2µ
2(1+uū)2ūu2µ

+
β

4
u(1−uū)(1+uū)2+

4

e2
u
[
(uν ūν)

2−u2µū
2
ν

]

−
2

e2
(1+uū)

[
ūµνuµuν−u

µνūµuν +u
µūµ∂

2
νu−u

2
µ∂
2
ν ū
]

= 0 . (87)

Assuming u= eiωtv(r) results in

−µ2(1+ vv̄)3	v+2µ2(1+ vv̄)2v̄(∇v)2

+

(
β

4
−ω2µ2

)
v(1− vv̄)(1+ vv̄)2

+
4

e2
v
[
−ω2(v∇v̄+ v̄∇v)2+(∇v ·∇v̄)2− (∇v)2(∇v̄)2

]

+
2ω2

e2
v(1+ vv̄) [2∇v ·∇v̄+ v̄	v+ v	v̄]

−
2

e2
(1+ vv̄)

×
[
v̄kjvkvj− v

kjvkv̄j+(∇v ·∇v̄)	v− (∇v)
2	v̄
]

= 0 . (88)

Now, we assume in addition that (∇v)2 = 0 and 	v = 0.
Therefore we get

(
β

4
−ω2µ2

)
v(1− vv̄)(1+ vv̄)2

+
4ω2

e2
v(1− vv̄)(∇v ·∇v̄)

+
4

e2
v(∇v ·∇v̄)2−

2

e2
(1+ vv̄)(∇v ·∇v̄)jvj

= 0 , (89)

where we used v̄kjvkvj = (v̄
kvk)

jvj , which holds because
of the static eikonal equation. Next, we insert the Ansatz
v = f(z)ei(m1φ1+m2φ2), as in the previous sections. Then
the first line of (89) becomes

v(1−f2)

×

[(
β

4
−ω2µ2

)
(1+f2)2+

8ω2

e2R20
f2
zm21+(1− z)m

2
2

z(1− z)

]
,

(90)

where we used the relation

∇v ·∇v̄ =
2

R20
f2
zm21+(1− z)m

2
2

z(1− z)
, (91)

which follows from the static complex eikonal equation. In
the case whenm1 =m2 = 1, it leads to

v(1−f2)

[(
β2

4
−ω2µ2

)
(1+f2)2+

8ω2

e2R20
f2

1

z(1− z)

]
.

(92)

Inserting the simplest Hopf map f =
(
1
z −1

)1
2 , this can be

rewritten as

v(1−f2)

z

(
β2

4
−ω2µ2+

8ω2

e2R20

)
. (93)

On the other hand, the second line of (89) vanishes iden-
tically for the above profile function, as we know already
from Sect. 4.1 (see also [19]).
As a result, the simplest Hopf map solves the equa-

tion of motion (87) if the following dispersion relation is
satisfied:

β2

4
−ω2µ2+

8ω2

e2R20
= 0 . (94)

Thus, if µ2 > 8/e2R20 we obtain a stationary solution of
the Faddeev–Niemi model with the new baby Skyrme
potential,

u=

(
1

z
−1

)1/2
e±i(φ1+φ2)e±iωt , (95)

with the following frequency:

ω2 =
β2

4

1

µ2− 8
e2R20

. (96)

The total energy reads

E = (2π)2

×

[(
µ2R0+

4

e2R0

)
+
β2

4

(
R30
12

µ2e2R20+4

µ2e2R20−8
+
R30
6

)]
.

(97)

If the parameters of the model are chosen such that µ2 <
8/e2R20, then no stationary hopfion is found. However, for
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these parameter choices one can obtain an stationary hop-
fion in a slightly modified model. Namely, it is sufficient to
take the potential as in (64).
There is also a special case when µ2 = 8/e2R20. Now,

in order to fulfill (94), we must set β = 0 independently
of the value of ω. Therefore, now the pure Faddeev–Niemi
model without any potential term is investigated. In other
words, the solution (95) describes a stationary hopfion
in the original Faddeev–Niemi system with arbitrary fre-
quency. Such a Q-hopfion possesses the energy

E = (2π)2
3

2
µ2R0

[
1+
ω2R20
12

]
. (98)

As in the CP 1 model, Q-balls with unit topological charge
are finite energy configurations.

4.3 Hopfions with QH =m2

It is possible to construct a slightly more complicated fam-
ily of models, analogously to [27], which are solved by some
of the other eikonal knots with higher topological charges.
Concretely, we allow for the following dependence of the
Lagrange density:

Lm = L(l
(m)) , (99)

where

l(m) = σ(m)(|u|2) ·
∂u∂ū

(1+ |u|2)2
(100)

and

σ(m)(|u|2) =
(1+uū)2

uū
·

(uū)
1
m(

1+(uū)
1
m

)2 . (101)

For m= 1, we just have the family of models investigated
above. The equation of motion takes the form

∂µ

[
L′m

σ(m)

(1+ |u|2)2
∂µ
]
−L′m

∂

∂ū

[
σ(m)

(1+ |u|2)2

]
= 0 , (102)

or equivalently

σ(m)L′′m
(1+ |u|2)2

∂µl
(m)∂µu+

σ(m)L′m
(1+ |u|2)2

∂µ∂
µu

+L′m
∂

∂ū

[
σ(m)

(1+ |u|2)2

]
(∂µu)

2 = 0 , (103)

where now the prime denoted differentiation with respect
to l(m). Now, as before we can define a simpler submodel:

∂µ∂
µu= 0, (∂µu)

2 = 0 and ∂µl
(m)∂µu= 0 . (104)

It consists of the standard pure CP 1 submodel part (the
first two formulas) and an addition condition. The knotted
solutions of the pure CP 1 model have been described be-
fore; see (41). Thus only the third equation in (104) needs

to be solved. For this purpose we insert the static knotted

solutions of the free CP 1 model, uk =
(
1
z
−1
)k
2 eik(φ1+φ2),

into (100). Then, after a simple calculation one observes
that l(m) is constant if and only if m= k. In other words,
each family of models with a fixed value of the parame-
term= 1, 2, 3, ..., i.e., based on the variable l(m), possesses
a topological solution:

um =

(
1

z
−1

)m
2

eim(φ1+φ2) , (105)

with the Hopf index QH =m
2.

In analogy to the QH = 1 solution such objects can also
be found in all possible models of the form

Lm = L(l
(m), j(m)) , (106)

based also on the additional variable

j(m) = (σ(m))2
(∂µu∂

µū)2− (∂µu∂µu)(∂µū∂µū)

(1+ |u|2)4
. (107)

As a result, we find the interesting fact that there exists
a family of modified Faddeev–Niemi models which possess
exact topological knotted solitons. Namely, the models de-
fined by the following Lagrange density:

LmFN = µ
2σ(m)

∂µu∂
µū

(1+ |u|2)2

−
1

e2
(σ(m))2

(∂µu∂
µū)2− (∂µu∂µu)(∂µū∂µū)

(1+ |u|2)4
,

(108)

have the soliton solutions (105).

5 Summary and discussion

In the present paper, sigma-model type field theories
with field contents parameterized by the unit three compo-
nent vector field living on S3×R space-time have been in-
vestigated. There are two reasons for choosing such a phys-
ical space-time. First of all, it stabilizes, at least for some
models and for some value of the parameters, the obtained
solitons by introducing a scale parameter, i.e., the radius
of the sphere R0. Moreover, it also enables us for a rather
big family of models to obtain at least some solutions in
exact form. Specifically, we obtain solutions in many cases
where the corresponding theories on space-time R3×R ei-
ther do not have solutions (like, e.g., for the CP (1) model)
or where there are no solutions known analytically (like,
e.g., for the Faddeev–Niemi model). Whereas the first issue
can be explained through Derrick’s theorem, which does
not hold for the three-sphere, the second one can be related
to the different isometry groups of R3 and S3, respectively.
Indeed, the isometry group of S3 is SO(4) which has rank
2. Therefore, there exist two commuting vector fields (gen-
erators of isometries) which can be chosen to be v1 = ∂φ1
and v2 = ∂φ2 . These are symmetry generators for all theo-
ries where the Lagrangian is a scalar; therefore the Ansatz
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(12) is compatible with the equation of motion for all such
theories and reduces the static equation of motion to a non-
linear ODE. On the other hand, on R3 the isometry is only
SO(3) with rank 1 (forgetting the irrelevant translations).
To get a second commuting vector field (e.g., the angles ξ
and ϕ of the toroidal coordinates) one has to extend the
symmetry of the model under consideration (e.g., by choos-
ing theories with a conformally invariant static equation of
motion, as for the Nicole and AFZ models; for a detailed
account we refer to [34]). In more general cases like, e.g.,
for the Faddeev–Niemi model, only a symmetry reduction
to two independent variables is possible, and the resulting
non-linear PDE in two variables is still too complicated to
be solved analytically.

5.1 Stability

Next we want to discuss the issue of the stability of our
static solutions. For this purpose it is useful to briefly recall
the situation in flat space R3. For actions which are homo-
geneous in the degree of the derivatives, a scaling instabil-
ity is present and prevents the existence of soliton solutions
(static solutions). This is the contents of Derrick’s theo-
rem. The instability is due to the ultraviolet (UV) collapse
of field configurations when the homogeneous degree of the
derivatives is less than three, and due to infrared (IR) col-
lapse for a homogeneous degree greater than three. For
a homogeneous degree exactly equal to three the energy of
a static field configuration is invariant under scaling, and
static solutions may exist. In addition, the group of base
space symmetries of the static equation of motion is en-
hanced (e.g., conformal symmetries instead of isometries).
This is exactly what happens, e.g., in the Nicole and AFZ
models. If, on the other hand, the theory consists of a sum
of terms with different degrees of derivatives such that at
least one has degree less than three, and at least one has
degree greater than three, then these two terms scale op-
positely under scale transformations, and static solutions
may exist. Further, the model is not scale invariant; there-
fore solitons have a typical “size” as an intrinsic property.
This is the case, e.g., for the Faddeev–Niemi model.
Now let us discuss the analogous situation on the sphe-

re S3. On the three-sphere an IR collapse is no longer
possible. A field configuration which obeys a non-trivial
boundary condition (i.e., which has a non-zero topological
index) will always contribute some non-zero values of
derivatives over some finite subvolumes of the entire S3. On
the other hand, an UV collapse (shrinking of field configu-
rations) is still possible. Therefore, we expect that theories
with actions which are homogeneous with less than three
derivatives will not have genuine solitons – i.e., static so-
lutions which are absolute minima of the energy within
a sector with fixed topological charge. On the other hand,
for models which contain at least one term with degree in
derivatives greater than three we expect stable solutions,
i.e., genuine solitons.
We want to investigate the issue of stability more close-

ly for the simplest Hopf map (81), which solves most of
the theories we have studied in this paper. The stability is-

sue of this field configuration has already been investigated
in [19] for the Faddeev–Niemi model, so we can make use of
these results. In [19] a one-parameter family of fields uλ has
been constructed, where λ= 1 just gives the standard Hopf
map. The energy density of the standard Hopf map is con-
stant both for the quadratic lagrangianL2 (the CP 1 term)
and for the quartic lagrangian L4. Further, both energy
densities become peaked for very large or very small values
of the parameter λ (around the north pole or south pole of
the S3, respectively). The energy of the quadratic (CP 1)
term for the one-parameter family uλ has a maximum at
λ= 1. For very small or very large values of λ the energy
approaches zero. However, the limiting field configurations
for λ = 0 or λ =∞ cannot be attained, because they are
trivial and do not belong to the sector with Hopf index one.
Therefore, there does not exist a genuine soliton in the sec-
tor with Hopf index one for the CP 1 model. The solution
for λ= 1 is a saddle point solution rather than a minimum.
For the quartic term, the energy has a minimum at λ= 1.
Further, the energy tends to infinity in the limits λ→ 0
and λ→∞. This supports the conjecture that the stan-
dard Hopf map is a genuine soliton (minimizer of the sector
with Hopf index one) for the quartic model (although there
does not seem to exist a rigorous proof up to now). For
the case of the Faddeev–Niemi model LFN = L2−L4 (here
we ignore constants) we just briefly repeat the discussion
of [19]. For sufficiently small radius R0 of the three-sphere
the energy of the quartic term dominates (behaving like
1/R0), and the energy is minimized for λ= 1. So probably
the standard Hopf map is a true minimum. For large values
of the sphere radius the energy of the quadratic term dom-
inates (behaving like R0), and the standard Hopf map is
just a saddle point. However, now, complete UV collapse
is not possible (this would render the energy of the quartic
term infinite). Instead the energy is minimized for some fi-
nite λ0 ≥ 1 (or, equivalently, for its inverse 1/λ0) with the
energy density localized around the north pole (or south
pole) of the S3. For larger values of R0 the localization be-
comes more pronounced (i.e., λ0 becomes larger). So a true
soliton probably exists for the Faddeev–Niemi model even
for large values of the sphere radius, but it is no longer
the standard Hopf map with its energy density evenly dis-
tributed over the whole S3. We expect this generic pattern
of stability also to hold for higher Hopf index. The gener-
alization of the above discussion of stability to the other
models studied in this paper is straightforward.
Finally, let us just mention that the question of sta-

bility is more involved for the stationary solutions (Q-
balls). Firstly, stability is no longer related to the mini-
mization of the energy and, secondly, the presence of fur-
ther non-trivial conserved charges (like the Noether charge
in Sect. 3.2) complicates the analysis and tends to make so-
lutions more stable. A detailed discussion of that issue is
beyond the scope of this article.

5.2 Summary of results

Firstly, static knotted configurations solving the complex
eikonal equation have been derived. They are the S3 coun-
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terparts of the eikonal knots on R3 and, therefore, describe
linked torus knots with arbitrary value of the topological
charge. The problem whether non-torus knots, represented
for instance by the figure-eight knot, can also be found
for the eikonal equation is still an open question. Unfortu-
nately, our method does not allow us construct such knots.
In addition, time-dependent knots (stationary or explod-
ing/collapsing ones) have been constructed.
Secondly, we have shown that eikonal knots with Hopf

index QH =±m2, where m ∈ Z, are solutions of the pure
CP 1 model on S3. The energies of these solutions can
be related to their topological charges. Concretely, the
energy is proportional to the square root of the charge.
Stability analysis shows that these solutions are not sta-
ble, i.e., they are not true solitons. Instead, they are sad-
dle point solutions. A family of exact stationary solutions
has been obtained, as well, for the CP 1 model with the
“new baby Skyrme” potential term. Their frequencies are
strictly determined and do not depend on the topology of
the solutions (value of the parameters m1 and m2). More-
over, a slight modification of the potential gives collaps-
ing/exploding solutions.
Thirdly, in a very large class of models a static hop-

fion with unit Hopf index (the standard Hopf fibration)
has been found. In the case of the Faddeev–Niemi model,
we reproduced a solution already obtained by Ward [19].
In addition, a stationary generalization of the soliton has
been derived for the Faddeev–Niemi model with the “new
baby Skyrme” potential. Its frequency is determined by
the parameters of the model. This may be of some in-
terest in the context of the effective model for the low-
energy quantum gluodynamics. Namely, the Faddeev–
Niemi model spontaneously breaks the globalO(3) symme-
try and, as a consequence, two massless Goldstone bosons
appear. To get rid of such non-physical excitations one
has to improve the model and add a symmetry-breaking
term [31] (see also [32]). The most obvious way to ac-
complish this is to introduce a potential. For the special
case when the parameters obey µ2 = 8/e2R20 a stationary
hopfion with QH = 1 has been found in the pure Faddeev–
Niemi model, where the frequency may take on arbitrary
values.
Finally we have proved that also more complicated

static hopfions with higher values of the topological charge
can be obtained in modified models. The modification is
given by the so-called dielectric function.
There are several directions in which our work can be

continued. One could, for example, try to derive static soli-
ton solutions in the models with the new baby Skyrme
potential added and compare them with the stationary
solutions.
On the other hand, one could study the issue of quanti-

zation of the obtained Hopf solitons [35]. Also the relevance
of the saddle point solutions of the CP 1 model for its sub-
sequent quantization would be worth investigating.
Finally, we hope that the results presented here lead

to some further insight into general properties of theories
with knotted solitons and may, in this respect, also help
in understanding the corresponding theories in standard
Minkowski space-time.

Acknowledgements. This research was partly supported by
MCyT(Spain) and FEDER (FPA2005-01963), Incentivos from

Xunta de Galicia and the EC network “EUCLID”. Further,
C.A. acknowledges support from the Austrian START award
project FWF-Y-137-TEC and from the FWF project P161 05
NO 5 of N.J. Mauser. A.W. gratefully acknowledges support

from the Polish Ministry of Education and Science.

References

1. E. Babaev, L.D. Faddeev, A. Niemi, Phys. Rev. B 65,
100512 (2002); E. Babaev, Phys. Rev. Lett. 89, 067001
(2002)

2. Y.M. Cho, H. Khim, P. Zhang, Phys. Rev. A 72, 063603
(2005)

3. G.’t Hooft, Nucl. Phys. B 79, 276 (1974); G. ’t Hooft, Nucl.
Phys. B 153, 141 (1979); A. Polyakov, Nucl. Phys. B 120,
429 (1977)

4. L. Faddeev, A. Niemi, Nature 387, 58 (1997)
5. Y.M. Cho, Phys. Rev. Lett. 87, 252001 (2001)
6. L. Faddeev, A. Niemi, Phys. Rev. Lett. 82, 1624 (1999);
E. Langmann, A. Niemi, Phys. Lett. B 463, 252 (1999)

7. Y.M. Cho, Phys. Rev. D 21, 1080 (1980); Y.M. Cho, Phys.
Rev. D 23, 2415 (1981); Y.M. Cho, Phys. Rev. Lett. 46,
302 (1981)

8. S.V. Shabanov, Phys. Lett. B 463, 263 (1999); S.V. Sha-
banov, Phys. Lett. B 458, 322 (1999)

9. K.-I. Kondo, Phys. Lett. B 600, 287 (2004); K.-I. Kondo,
T. Murakami, T. Shinohara, Prog. Theor. Phys. 115, 201
(2006); K.-I. Kondo, T. Murakami, T. Shinohara, Eur.
Phys. J. C 42, 475 (2005)

10. Y.M. Cho, Phys. Lett. B 616, 101 (2005)
11. L. Dittmann, T. Heinzl, A. Wipf, JHEP 0212, 014 (2002)
12. H. Gies, Phys. Rev. D 63, 125023 (2001)
13. F. Lin, Y. Yang, Comm. Math. Phys. 249, 273 (2004)
14. R.A. Battye, P.M. Sutcliffe, Phys. Rev. Lett. 81, 4798
(1998); R.A. Battye, P.M. Sutcliffe, Proc. Roy. Soc. Lond.
A 455, 4305 (1999)

15. J. Hietarinta, P. Salo, Phys. Lett. B 451, 60 (1999); J. Hi-
etarinta, P. Salo, Phys. Rev. D 62, 81701 (2000); J. Hietar-
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